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Abstract .  The paper is devoted to study a global optimization problem for a class of nonsmooth, 
nonconvex and non-locally Lipsehitz functionals on a vector-valued reflexive Banaeh space. The 
existence of an element which is both a global minimizer and a solution of the associated hemivari- 
ational inequality is proved under some unilateral growth restrictions imposed on "nonlinearities" 
and under the assumption that an appropriately modified version of the Hedberg truncation 
procedure can be applied. 
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1 I n t r o d u c t i o n  

The  purpose  of this paper  is to s tudy  a class of  nonsmooth ,  nonconvex and n o n -  
locally Liposchitz functionals on a reflexive Banach space V. We are interested in 
establishing the  existence of global minimizers and in providing a detailed exposi- 
t ion of  their  variat ional  properties.  It  is well known tha t  if I : V ~ R is smooth  
then the  necessary condit ion for the opt imal i ty  is the Eu le r -Lagrange  equat ion 
I ' ( u )  = 0, I ' ( u )  being a derivative of I at u. I f  I is assumed to  be convex then 
its minimizer is character ized by the condit ion 0 E OI(u) ,  where OI(u)  C V* is 
a subgradient  of  I at u. This condit ion gives rise to variat ional  inequalities, well 
known in the l i terature  (see for instance [8, 9, 19, 26]). In more  general cases we 
are led to the  condit ion 0 E OI(u) ,  where OI(u)  is unders tood  as to be the general- 
ized gradient  of Clarke-lq.ockafellar [7, 27] The  associated variat ional  expressions 
are then called hemivaria t ional  inequalities. They  have been first in t roduced  and 
studied by Panagio topoulos  in [19-24]. For the  fur ther  results in this area we refer 
the reader to  [1, 2, 6, 11-18, 25, 28, 29]. 

The  present approach  is devoted to s tudy  a global op t imiza ton  problem and to 
examine the associated hemivariat ional  inequali ty for a class of  nonsmooth ,  non- 
convex and non- loca l ly  Lipschitz functionals on a vector -va lued  reflexive Banach 
space. The  paper  uses some ideas f rom Webb [29] and Brezis and Browder  [4] who 
studied s t rongly nonlinear equations in scalar-valued Sobolev spaces by apply- 
ing Hedberg ' s  approximat ion  technique [10]. It is of  our interest to  consider in 
this paper  the case in which functionals involved are nonsmoo th  and defined on 
vec tor -va lued  funct ion spaces. 

To precise the class of  functionals we are going to deal with let us suppose tha t  
V is a reflexive Banach  space compac t ly  imbedded into LP(~;  R N ) ,  p > 1, N >_ 1, 

* On leave from his original institute. 
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f~ is a bounded  domain in R TM, m _> 1. We write II. IIv and II �9 IIL <n;R ) for the 

norms in V and LP(f~; RN),  respectively. Th roughou t  the paper  it is assumed tha t  
V f~ L~176  R N) is dense in V. 

Let ~I, : V --* R be a smooth  funct ion f rom V into R. By r : V --* V* we denote 
its derivative. Here V* stands for the dual of  Vo For the pairing over V* • V we 
use the symbol  (., .). Th roughou t  the paper  it will be assumed tha t  ~I ,I is coercive 
and bounded.  It means tha t  

for some a : R + --~ R, R + = {~ �9 R : x _> 0} with l imr--.ooa(r) = +co ,  and 
tha t  ~ mapps  bounded  sets of V into bounded  sets of V*. Moreover,  we assume 
tha t  ~ is p seudo-mono tone .  It implies t ha t  whenever u,~ ~ u weakly in V and 
lira sup (~ ' (un ) ,  u n -  u) _< 0 then ~ ' ( un )  --* ~ ' (u )  weakly in V* and (~'(u,~), un) --* 
(qg(u), u}. Further ,  let j : R 2v --* R be a locally Lipschitz funct ion f rom R N into R. 
T h r o u g h t o u t  the  paper  we assume j to  satisfy two unilateral  g rowth  restrictions: 

(H2) V , eR N, 

where a : R + --* R + is a nondecreasing funct ion f rom R + into R +, j0(. ,  .) is the 
generalized Clarke differential [7], i.e. 

j0(~; z/) = lira sup j ( (  + h + ;~/) - j ( (  + h) 

~--*0 

1 < a < p and where/3 > 0 is a nonnegat ive  constant .  By means of j we can define 
a funct ional  Y : V ~ / ~  = R U {+co}  by 

{fj( 
u)df~ i f j ( u )  E LI(~) 

J ( u ) =  a (1.1) 
+co otherwise. 

Now we are in a posit ion to precise the class of functionals we are going to deal 
with. Let g C V* be an a rb i t ra ry  element of V*. Define I : V --~ k by the formula  

n 

(1.2) 

One can check immedia te ly  tha t  under  the hypotheses  (H1)  and (H2) ,  J is a 
nonconvex,  nonsmooth ,  not locally Lipschitz functional  with the effective domain 
D(I)  = {v C V :  J(u) < co} not  coinciding with the whole space Y. So I shares 
all the aforementioned irregularities. 
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The following minimization problem will be considered. 

P r o b l e m  (P)  Find u �9 V such that  

I (u)  = inf I(v) .  (1.3) 
vEV 

It is natural  to associate with (1.3) the following hemivariational inequality. 

<~,(u) _ g, ~ _ ~> + [ j0(~;  ~ _ ~ ) d ~  > 0 Vv V. (1.4) 

f~ 

Since growth restrictions imposed on j as formulated in (H1) and ( / /2 )  are too 
weak to ensure a priori the finite integrability of j~ v - g) in fl for any v �9 V, 
we have to modify (1.4) and to consider the following problem. 

P r o b l e m  (Q) Find u �9 V for which there exists X � 9  R N) with the properties 
that  

- g , v - u > + / X . ( V - u ) d l 2 = O  V v � 9  <~'(~) v ;3 L~176 R N ) (1.5) 
II 

X ' U  �9 Ll(l'~), X �9 Oj(u), j (u)  �9 LI(~) .  (1.6) 

Here and from now on " ,1 denotes the inner product in _~N. Our main task in 
this paper is to show that  if the original space V possesses some approximation 
property, then there exists at least one element u �9 V which is a solution of both 
(P)  and (Q). The mentioned hypothesis is formulated as follows. 

T r u n c a t i o n  H y p o t h e s i s  For each u E V there exist two sequences {r C L~176 
and {'r C L~176 R hr) with 0 < eL < 1 and [['r < C such that  

(I-Ia) 
{(1 - ek)u + ek~k} C V n L~(f l ;  R N) 

(1 - ek)u + ek~k ---> u in V. 

One can easily recognize that  in the scalar case N -- 1 the property described in 
(H3) is common for Sobolev spaces Wm,P(fl) provided the boundary Ol2 is smooth 
enough. This is a consequence of the famous result of Hedberg [10] who showed 
that  each element u E Wm'P(l~) can be approximated by functions of the form 
(1 - ek)u E Wm'P(l'l) fq L~176 with 0 < ek < 1 in the sense that  (1 - ek)u ~ u in 
w ~ , p ( ~ ) .  
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2 Some Prel iminaries  and Global Optimization Problem 

This Section is devoted to study the global optimization problem (P). First we 
point out some properties of j resulting from (H1) and (H2). 

L e m m a  2.1 Assume that  

j0ff; _~) < Z(1 + I~1 ~) 

Then there exists a k >_ 0 such that  

j f f )  > - k ( l +  I~l ~) 

E R  N, s>_ 1. (2.1) 

c R N. (2.2) 

Proof. For any ~ e R N with I~1 > 1 define r = j((1 - t)~). Then by the Lebourg 
mean value theorem one can get 

j(/_~_~]])_j(~)_= r 1 6 2 1 6 2  ; -  ~ ) < j O ( ( l _ 0 ) ~  ; -  _~)[~[-i[~, 

for some 0 < 0 < ~ ,  where r .) stands for the generalized Clarke differential 

[7]. Hence 

]~]- 1 < Z(1 + (1 - e ) s l r  

-< 1-e  ~ +~(1-e)s-  ll~ls-<~l~l+~l~l~ 

_< 2~(1 + IW), 

because ~ _< I~]. Thus ,  for an arbitrary ~ E R N the estimate follows 

j(~)  > j ( ~ )  - 2Z(1 + 141 *) > - sup IJ (v ) l -  2fl(1 + I~1 ~) 
Ir I~1_<1 

> - k ( 1  + Ir 

where k = supLnl<_ 1 Ij(~?)l + 2ft. The proof is complete. 

L e m m a  2.2 Suppose that  (H2) holds. Then there exists a nondecreasing function 
~/: R + --~ R + such that  the estimate 

{ j (4)  + ~(1,71)(1+ ]4l ~  i f  0 < e < '~,1~ ~ 
j((1 - E)~ + r < (2.3) 

supl~l<_lnl+ 1 j (#)  i f  ~ < r < 1 
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is valid for any ~, r /E R N with I~1 > 1. 

Proof. Let ( , r /  e R N and r  = j ( ( 1 -  t)# + tr/), t e [0, 1]. Take I~1 > 1 and 

0 < e < ~ The  mean  value theorem of Lebourg allows us to conclude tha t  I~1 " 

j ( ( 1  - e ) (  + er/) - j ( { )  = r  - r  < r176 e) < Ej~ - 0)~ + Or/; - ~  + r/) 

for some 0 < 0 < r _< ~ .  Hence due to  (H2)  one obtains 

1 
j ( ( 1  - e)~ + er/) - j ( ( )  _< e j~  - 0)~ + Or/; 7 / -  (1 - 0)~ - Or/) 1 - 0 

_< e~(Ir /I ) ( l+  I(1 - 0)~ + 0r/l~)i  I 0 

1 
_< e ,~( l r / I ) ( l+ c(1 - 0)"1r '~ + cOalr/I~ 1 _ 0 

1 
< ~( I r / I ) ( l_~-  ~ + ~(1 - oy '  - 11C' + clr/l~ 1 _-_2--~1 o ) 

-< ~(Ir/I)(lr + 41~1 ~ + clr/l~lr 

< ~,~(Ir/I)(clr/I ~' + c + 1)(1 + I C ' ) ,  

where c is a positive constant .  Here we have used the fact tha t  the condit ion 

0 < 8 < ~ implies ~ > I~1-If ~ < e < 1 then  I(1 - {)e + er/I _< 1 + Ir/I and 
the second es t imate  in (2.3) follows immediately.  Finally, sett ing 

"T(Ir/I) = ,:<lr/I)(clr/I ~ + c + 1) 

we get (2.3) which completes the proof.  

By the local Lipschitz p rope r ty  of j we verify easily tha t  

j ( ( 1  - e)~ + er/)) _< j(~') + eL(2 + Ir/I)(2 + Ir/I) for 151 - 2, 0 < ~ < 1, (2.4) 

where L(r) denotes the Lipschitz constant  of j in the ball B(0,  r )  = {~ E R N : 
I(I < r} ,  r > 0. This combined with (2.3) permi ts  the  formula t ion  of the following 
es t imate  

j ( (1  - e) + er/) _< j(~') + eq'(Ir/I)(1 + I~1 ~) 1 
for 0 < ~ < ~,  (2.5) 

where 

~(Ir/I) := ~(Ir/I)+ L(2 + Ir/I)(2 + Ir/I). 
0 1 It is wor th  not ing tha t  (2.5) holds for e C [ , ~] not  for the  whole interval  [0, 1]. 

In the  sequel we shall need also an es t imate  similar to  (2.5) bu t  with right hand  
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side independent of ~ E [0, 1]. It is not difficult to verify that  under the hypotheses 
(H1) and (H2)  Lemma 2.2 combined with (2.4) yields 

i ( ( 1  - c)r + ev) _< j ( ( )  + ~(1~1)(1 + 151 ~)  for o < ~ < 1, 

where (p(.) is delined by 

(2.6) 

v(l~l) := ~(I,I) + L(2 + Ivl)(2 + Ivl) + sup j ( , )  + k v c R N 
1~,1<1,71+1 

Let us turn to the global optimization problem (P).  First we point out some 
properties of I .  The estimate (2.2) combined with Fatou's lemma allows us to 
conclude that  J : V ~ .~ is weakly lower semicontinuous. Since ~2 has the same 
property due to the pseudo-monotonicity of @' (cf. [5], see also [lS]), thus so is the 
functional 1. The coercivity of ~ '  and (2.1) imply that  I is bounded from below. 
Indeed, one can check easily that  

I(v) = �9 (v) + f j(v)dgt - <g, v> 
II 

_> r  f01<~'(tv), .>dt- f k(1 + I , I )d~- i lg i lv .  I1.11v 

> ~ ( 0 ) +  a(tllv]lv)ll~ilvdt- k m e s U -  klll.llv 

> ~(0) + a( l lv l l - ) l l . [ I - -  kmes~  - k~ll'liv, k~ > 0, 

where the function 
T 

a i r )  = 1 f - a(t)dt r >_ 0 
r 

o 

satisfies the coercivity condition h(r)  --~ +c~ as r ~ +c~. Accordingly , / i s  coercive 
as well and by the classical argument the infimum of I over V is achieved. 

T h e o r e m  2.1 Suppose that  the hypothesis (H1) holds. Then problem (P)  has at 
least one solution. 

The result below will prove extremely useful in the next section where we pass 
into the framework of the V N L ~ ( ~ ;  RN)-space. 

P r o p o s i t i o n  2.2 Suppose that  (H1)  - (H3) hold and that  u @ V is such that  

I(~) = inf /(v). (2.~) 
vcVnL~(n;R N) 

Then u is a solution of (P).  

Proof. It is clear that  the assertion will be proved if we show that  whenever J(w) 
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is finite at w E V, one can find a sequence {wk} C V n L~~ N) such that 
wk --~ w in V and 

J(w~) -~ Y(w). 

Recall that by (H3) there exist {ek} C L~(F~) and {~k} C L~~ N) with 
0 < sk _< 1 and II~kIIL~(a;RN) --< C, such that 

{(1 - ek)w + ekgk} C V N L~176 R N) 

( 1 - - e k ) W + e k a k : = W k ~ W  in V. 

We can certainly assume that 

wk---~w a.e. in ~/, 

for the imbedding V C LP(~; R n) is compact. From (2.2) and (2.6) we have 

-k(1 + I, kl) _< J( k) <_ j( o) §  o(c)(1 + 

Since j(w) E Ll(n) and 

f(1 + IzvklS)da 
n 

it follows by Fatou's lemma that 

and 

Therefore 

f 
= / ( l + l w l S ) d a ,  l < s < p ,  

fl 

lira infk / j(wk)dgt >_ f j(w)d~ 
f~ fl 

limksup f j(wk)d~ < f j(w)dfL 
fl fl 

lim / j(wk)d~ = / 
fl fl 

and the proof is complete. 

3 Varia t ional  P r o p e r t i e s  

This Section provides a detailed exposition of variational properties of solutions of 
the global optimization problem (P). First result in this direction reads. 

P ropos i t i on  3.1 Suppose that (H1) and (H2) hold and that u e V is a solution 
of (P). Then the following hemivariational inequality is fulfilled 

( ~ ' ( u ) - g , v - u ) +  f j~ VveVnL~~ (3.1) 
o 
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1 Proof. Due to the optimali ty for each v C V n L~176 R N) and 0 < t _~ ~ we have 

I (u )  < • + t(v - u)) 

with finite values on the right hand side of the foregoing inequality. Indeed, from 
(2.5) it follows tha t  

J(u § t(v -t u))  - J ( u )  _< ~([[vlIL~(n;RN))/(1 § < §  

fl  

(3.2) 

1 Further,  for any 0 < t < 5 one obtains the inequality 

o ___ + - =)) - + / j ( u +  t(v -tu)) - j (u)d ~ -  ( g , v _  u}. 

l] 

Before passing to the limit as t --* 0+ we make the observation that  due to (2.5) 
one can apply Fatou's  l emma to the integral over ~'/ . It amounts to 

lim sup / j(u + t(v ~ u)) - j(u) df~ < / j~ v- u)df~ < oo. 
t--~O+ d 

fl n 

(3.3) 

Hence, by application of the limit procedure as t ~ 0+ the assertion results. 

Note that  (3.1) is not valid for every v E V. Since there are no any a priori 
arguments ensuring the finite integrability of j~  v - u) in f~ we are allowed to 
substi tute there only elements of V N L~176 

Now we proceed to study problem (Q). The idea is to pass into the framework 
of finite dimensional subspaces of V V1 L~176 RN). Let A be the family of all 
finite dimensional subspaces F of V n L~176 RN), ordered by inclusion. Denote 
by iF : V ~ F the inclusion mapping of F into V, and by i~ : V* --~ F* the dual 
projection mapping of V* into F*, F* being the dual of F.  Define IF : F -~ R by 

For any F E A we formulate the finite dimensional minimization problem. 

P r o b l e m  (PF) Find U F E F such that  

IF(uF) = inf IF(v). 
v E F  

(3.4) 

P r o p o s i t i o n  3.3 For every F E A the problem (PF) has at least one solution. 
Moreover, there exists a positive constant C not depending on F such tha t  

IiuF]l < M. (3.5) 



ASPECTS OF SOME NONCONVEX NONSMOOTH PROBLEM 391 

Proof. The existence of a solution to (PF) is obvious. For the boundedness we 
make the observation that  the restriction of J to Lc ' (~;  R/v), say Joo, is locally 
Lipschitz. Moreover, 

I F  = * o i F  - ( ~ g ,  . )F + s  o i F ,  

where (-, "}F denotes the pairing over F* x F,  is a locally Lipschitz function on F,  
as well. Thus, if u f  is a solution of (PF) then 

o e OZF(uF), 

where OIy(uy) stands for the generalized Clarke gradient of IF at u f  [7]. By the 
basic calculus it follows directly that  

0 e 0I~(~F)  c i ~ , ' ( ~ )  - i;~g + ~ 0 J o o ( , F ) .  

Since OJcc(UF) C LI(~/; RN), [7], there exists XF E Ll(fl ;  R N) such that  

( * ' ( u f )  -- g, v -- u f )  + f XF" (V -- u f ) d f l  = 0 Vv e Y 
, (3.6) 

Substituting v = 0 into (3.6) and applying (H1) yields 

~F) < (g, ~F> + [ XF " (--~F)da < Ilglb*lbFIIv + k [ (1 + I~FI)d~ <~'(~), 

< ]lgllv*ll~FIb + kmes (~) + k~ll~FIIv. 

Thus the coercivity of ~ '  implies the boundedness of {UF}FE A in V. The proof is 
complete. 

With respect to compact properties of {XF}F6A w e  formulate the following 
result. 

L e m m a  3.4 For F 6 A let a pair (uF,XF) E F • LI(I~;R N) satisfy (3.4) and 
(3.6). Then the set {XF 6 LI(f/ ;  RN): (uF, XF) satisfies (3.4) and (3.6) for some 
UF C F, F C A} is weakly precompact in Ll(fl;  RN). 

Proof. According to the Dunford-Pettis theorem it suffices to show that  for each 
r > 0 a 6~ > 0 can be determined such that  for any w C f / w i t h  mesw < ~ ,  

f ]XFJd~ < e, F e A. (3.7) 
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Fix r > 0 and let r/E R N be such that  177] < r. Then we have 

x F .  (n - =F) < J~  n - ~ )  

from which, by virtue of (H2)  it results tha t  

XF . n  <_ XF . u F  + ,~(~)(1 + I~,Pl~'). 
Denoting by XF~, i = 1, 2 , . . . ,  N ,  the components of XF we set 

T 
~/ = ~ ( s g n x F 1 , . . .  , sgnxFN), 

V I v  

where 
1 if y > 0  

s g n y =  0 if y = 0  
- 1  if y < 0 .  

It  is not difficult to verify tha t  17/I < r and 

(3.8) 

T 

Therefore we are led to the est imate 

Integrat ing this inequality over w C f /yields  

f Ixfldf~ <_ ~ f XF" ~fd~ + ~(~)mes~ 
~ ( 3 . 9 )  

+:~rN a(r)(mesw)ffl lUFI ILO'p(fl;RN), 

where/3 = -P . Thus,  from (3.9) we obtain p- -G  

f IXF[dfl <_ ~r N IXF" uFd~ q- ~ a ( r ) m e s w  -4- ~(r)(meso~):O~,'~ll~,Ft[- ~ 
t,g t~ 

<_ ~ fx, . .~,~d.  + ~ . ( . ) m e s ~  + ~ . ( . ) ( m e s ~ ? . ~ M  '~, ~, > O, 
(3.10) 

where u is a positive constant resulting from the continuous imbedding of LV(~t; R N) 
into V. Now we show tha t  

J XF" uFdfl C (3.11) < 

for some positive constant C not depending on w C fl and F E A. Indeed, from 
(H1)  one can easily deduce tha t  

xF  "uF + k(1 + lu~ D > 0 for a.e. �9 e a. 
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Therfore we can write that  

d d 
o., f~ 

and consequently 

fxF.  -aa _ fxF. ,Faa+kmesa+k ,ll ,FIIv 
w f t  

< /XF.UFdf t+kmes f~+kuM.  
n 

393 

Now, let E > 0. Fix r > 0 with 

- - C  < - .  (3.13) 
r 2 

It is a simple ma t t e r  to determine a 6e > 0 small enough such tha t  

__v/-Na(r)mes w + 4Ra(r)(mesw)ff ua M a < _E 
r r - 2  

whenever mesw < 5e. Finally, f rom ( 3 . 1 2 ) -  (3.14) we obtain 

/ ]XFld~ ~ e F c A, 
03 

for any w C ~ with mesw < 5~. Accordingly, the weak precompactness of {XF : 
F E A} in L I (~ ;  R N) is proved. 

We can now formulate our main result. 

(3.14) 

Recall tha t  @1 maps  bounded sets into bounded sets. Accordingly, by means of 
(3.5) and (3.6) we conclude tha t  

JXF" uFd~ - - ({"(uF)  [[~2'(UF) -- g[]v*[]UF[[W C, C = const. g, uF)V <_ <_ 

n 

From the last two estimates we easily obtain (3.11), as desired. Now let us turn to 
(3.10). By (3.11) for r > 0 one gets 

/IxFIda _< 4Rcr -k 4 R a ( r ) m e s  w r  + ~Na(r)(mesw)ffUar Ma" (3.12) 
Lq 
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T h e o r e m  3.5 Let (H1) - (H3) be satisfied. Then there exists at least one global 
minimizer u E V for I on V such that  for some X C Ll(fl;  A N) the following holds 

(, '( .)  - g ,v  - . )  + f x .  (v - . ) d ~  = 0 Vv c v n z~176  A N) 
fl 

(3.15a) 

x e 0j (~) ,  x . ~  e r  j (~ )  e L~(~) ,  (3.15b) 

i.e. u is a solution of both (P) and (Q). 

Proof. The proof is devided into a sequence of steps. We first show that  there exists 
an element u E V satisfying (2.7). Next we prove the existence of X E Ll(fl ;  A N) 
such that  (3.15a) and (3.15b) hold. Finally we invoke Proposition 2.2 to conclude 
the assertion. 

Step 1. For F E A let 

WE= U {(UF', XF') E V • L~(O; AN): (Up, , XF') satisfies (3.4)and(3.6)}. 
FIEA 
FtDF 

(with F being replaced by F '  in (3.4) and (3.6)). We use the symbol weakcl (WF) 
to denote the closure of WE in the weak topology of V • LI(~;  AN). Moreover, let 

Z -- U {XF E LI(~'~; AN): ('g,F,X.F) sa t i s f i e s  (PF) fo r  s o m e  UF E F}. 
FEA 

Denoting by weakcl (Z) the closure of Z in the weak topology of LI(~;  A N) we 
get 

weakcl (WF) C By(O, M) • weakcl (Z) VF e h.  

Since By(O, M) is weakly compact in V and, by Lemma 3.4, weakcl (Z) is weakly 
compact in Ll(fl;  RN), the family {weakcl(WF) : F e A} is contained in the weakly 
compact set Bv(O, M) x weakcl(Z) in V • LI(~;  AN). Now let us notice that  for 
any F 1 , . . . , F k  E A, k = 1 , 2 , . . . ,  we have the inclusion WE1 n . . .  M WEb D WE, 
with F = F1 + �9 �9 �9 + Fk, from which it follows by Proposition 3.3 that  the family 
{weakcl(Wf) : F E A} has the finite intersection property. Thus the intersection 

n weakcl (WF) 
FEA 

is not empty. Let (u ,x)  be an element of this intersection. It is clear by the 
procedure employed that  u is a solution of the optimization problem (2.7) and 
that  j(u) E Ll(n) .  What  is left is to show that  (u,n) satisfies (3.15). Let us fix 
v E V M L ~ ( ~ ;  R N) arbitrarily. We choose F E A such that  v E F. Thus there 
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exists a sequence {(uF~, XF.~)} in Fn x L I (~ ;  R N) C WE (for simplicity of notations 
it will be denoted by (u,~, X~)) with the properties tha t  

< ~ ' ( - . )  - g,  ~ - - . >  + Y x . .  ( ~  - ~ . ) d a  = 0 W E F .  
. (3 .16 )  

• e oj(~,.) 

and 
u n ~ u  weakly i n V  

X,~ ~ X weakly in LI(f~; RN). 

Taking into account (3.16) and the fact that  v E F C F,~ we have 

(3.17) 

<,~'(un)-g,v>+ /Xn .vdO=O , n=1,2 . . . .  (3.18) 

n 

Now we are in a position to pass to the limit as n --~ oo in (3.18). The boundedness 
of ~'(un) allows us to conclude that  for some B E V*, 'I~'(un) ~ B weakly in V* 
(by passing to a subsequence, if necessary). Since v E V fl L~176 R N) has been 
chosen arbitrarily, the equality 

(B - g,v> 4 - / x ' v d f l  = 0 (3.19) 
fl 

is valid for any v C V A L~ RN). 
Step 2. We prove that  the first claim in (3.15b) holds. Since V is compactly imbed- 
ded into LP(f~; RN), from (3.17) we obtain (by passing to a subsequence, if neces- 
sary) 

u,~ --* u strongly in ZP(f~; RN). (3.20) 

This implies that  for a subsequence of {un} (again denoted by the same symbol) 
one gets 

Un ~ u  a.e. in fL 

Thus Egoroff 's  theorem can be applied from which it follows that  for any r > 0 a 
subset w C F~ with rues co < e can be determined such tha t  

u,~ --* u uniformly in fl \ w 

with u E L~176 \ w; RN). Let v E L~ \ co; R N) be an arbi t rary  function. From 
the est imate 

/ X,., . yd ,<  / j~ 
n\,,, a\,, 



396 Z. NANIEWICZ 

combined with the weak convergence in Ll(f~; R N) of X,~ to X ,  (3.20) and with 
the upper semicontinuity of 

L~(fl \ w; R N) ~ w, , f j~ v)df~ 

we obtain 

x ' v d • <  / j~ 
n\,, n\,o 

But the last inequality amounts to 

vv �9 L~ \ ~; RN). 

x � 9  a.e~ f~ \w.  

Since mes w < e and e was chosen arbitrarily, 

X �9 Oj(u) a.e. in a ,  (3.21) 

as claimed. 

Step 3. Now we show that  X" u C LI(fl) .  According to the Truncation Hypothesis 
one can find sequences {ek} e L~176 and {~k} C L~ R N) with 0 _< ek <-- 1, 
[[l';k[[L~(fl;RlV ) <_ C, such that  ~2k := (1 --ek)u+eknk E VNL~176 R N) and ~tk --* u 
in V. Since we already know that  X E Oj(u), one can apply (H1)  to obtain 

X" ( - u )  _< j ~  _< k(1 § I~1). 

Hence 

and consequently, 

x . =  >_ -k(1 + I~l) (3.22) 

X" uk = X" ((1 - ek)u + eks;k) > - k ( 1  § lul) - CIXI. (3.23) 

This implies that  the sequence {X" ~2k} is bounded from below by a function which 
is integrable in fL On the other hand, due to (3.19) we get 

> ( - B  + g,~k) = / X "  4kdfL 

fl 

Thus by Fatou's lemma X" u E Ll(f~), as required. 

Step 4. In this step we are aimed at establishing the esimate 

n n 
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For this purpose let us fix v E LCC(f~; R N) arbitrarily. Since X,~ E Oj(u,~), one gets 
by (H2) 

x , ~ - ( v -  ~,,) _< j~ v -  ~,,) _< ~(II~IILoo(n;R,,,))(1 + I~,,l'~). 

Thus by Fatou's lemma and by the semicontinuouity o fV  9 w ~ fn J~ w-u)df~, 
we obtain 

l iminf f x.~ u..dn >_ f x. yd,- f j~  Vv E VnL~176 RN). (3.25) 
fl fl f~ 

On substituting v = uk into the right hand side of (3.25) one gets 

fl I1 n 

(3.26) 

Further, it is easy to check that  

J~ ~k - ~) = ekj~ ,~k - ~) _< c~(ll'~kllL~(a;R~))(1 + I~1 ~) _ ~(C)(1  + I~l~). 
(3.2~) 

Therefore due to the fact that  ~k ~ u a.e. in ~ we are allowed to apply Fatou's 
lemma to deduce 

lira sup f j~ - u)dn <_ O, 
k 

n 

whereas from (3.23) we get 

limkinf f X" "ak df~ >_ f X" udfL 
fl f~ 

Finally, combining these inequalities with (3.26) yields (3.24), as desired. 

Step 5. We proceed to establish (3.15a). Our first claim is that  

( B -  g,u) + f x.udf~ = O. 
fl 

(3.2s) 

Indeed, (3.19) yields 

(B - g,/tk) + f X" ~kdgt = O. 

Since X" u E Ll(f / )  we get the following estimate 

x ~k = (1 - sk)x-  = + ~kx.  ~k _< Ix-  ~1 + Clxl 
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which together with (3.23) permits the conclusion 

f X" r -~ / X " udf~ 
n n 

due to dominated convergence. Thus the assertion follows. Next the pseudo-monotone 
property of ~ '  will be used. One can check at once that  from (3.16) and (3.28) it 
follows that  

Hence 

[1 fl 

< 0  

by means of (3.24). The known properties of pseudo-monotone mappings amount 
to B = ~ ' (u)  and (q ' (un) ,  un) --* (~ '(u) ,  u). Accordingly, to complete the proof it 
suffices to apply the limit procedure in (3.16) and to invoke Proposition 2.2. 

4 F ina l  R e m a r k s  a n d  C o m m e n t s  

In the present approach the function space V was assumed to be vector-valued. 
Essential simplifications are possible if N = 1 and V is compactly imbedded into 
LP(fl), p > 1. Namely, (H2) turns out to be superfiuous because (H1)  implies 
(H2)  with a -- 1 [15, 18]. Further, the famous result of Hedberg [10] ensures that  
each Sobolev space V -- Wl'P(fl) satisfies (H3) with ~k = 0 provided the boundary 
0fl is smooth enough. Accordingly we are led to the result being a consequence of 
the foregoing remarks and the Sobolev imbedding theorem. 

T h e o r e m  4.1 Let fl C/~m be an open bounded domain with a sufficiently smooth 
boundary 0ft. Assume that  V = Wl'q(f/), q > 1, l > 1, and that  (H1) holds. Then 
I attains its infimum over V at some u E V. Moreover, there exists X E LI(F~) 
such that  the pair (u ,x )  satisfies (3.15a) and (3.15b). 

For other applications of the Hedberg truncation technique to study nonlinear 
problems the reader is referred to [3, 4, 29] and the references quoted there. 

Let us turn to the vectorial case N > 1. According to the author 's  knowledge the 
truncation conjecture (H3) for a Sobolev vector space V = Wt'q(~; RN), N > 1, 
seems to be an open problem. 

The unilateral growth restrictions (H1) and (H2) have been introduced by 
the author in [15] (see also [16, 18]) in order to generalize the well known sign 
condition (see for instance [4, 29]) to the case in which nonsmoothness occures 
and the original space consists of vector-valued functions. 
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It is wor th  no t ing  tha t ,  up till now, all the existence results for hemivar ia t iona l  

inequali t ies  involving un i la te ra l  growth hypotheses  of the type  (H1)  and  (H2)  
have been  derived on the condi t ion  t ha t  ~1(.) is weakly cont inuous,  i.e. it maps  
weakly converging sequences of V into weakly converging sequences of V *. In  the 
present  approach we have s t r eng thened  the result  because ~1(.) was assumed to 
be p s e u d o - m o n o t o n e .  
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